Isometries between spaces of homogeneous polynomials
نویسندگان
چکیده
We derive Banach-Stone theorems for spaces of homogeneous polynomials. We show that every isometric isomorphism between the spaces of n-homogeneous approximable polynomials on real Banach spaces E and F is induced by an isometric isomorphism of E′ onto F ′. With an additional geometric condition we obtain the analogous result in the complex case. Isometries between spaces of n-homogeneous integral polynomials and between the spaces of all n-homogeneous polynomials are also investigated.
منابع مشابه
Surjective Real-Linear Uniform Isometries Between Complex Function Algebras
In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$, where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...
متن کاملSpecial geometry, cubic polynomials and homogeneous quaternionic spaces
The existing classification of homogeneous quaternionic spaces is not complete. We study these spaces in the context of certain N = 2 supergravity theories, where dimensional reduction induces a mapping between special real, Kähler and quaternionic spaces. The geometry of the real spaces is encoded in cubic polynomials, those of the Kähler and quaternionic manifolds in homogeneous holomorphic f...
متن کاملRough Isometries of Lipschitz Function Spaces
We show that rough isometries between metric spacesX,Y can be lifted to the spaces of real valued 1-Lipschitz functions over X and Y with supremum metric and apply this to their scaling limits. For the inverse, we show how rough isometries between X and Y can be reconstructed from structurally enriched rough isometries between their Lipschitz function spaces.
متن کاملPolynomials on Banach Spaces with Unconditional Bases
We study the classes of homogeneous polynomials on a Banach space with unconditional Schauder basis that have unconditionally convergent monomial expansions relative to this basis. We extend some results of Matos, and we show that the homogeneous polynomials with unconditionally convergent expansions coincide with the polynomials that are regular with respect to the Banach lattices structure of...
متن کاملA Note on Scalar-valued Absolutely Summing Homogeneous Polynomials between Banach Spaces
In this note we show that the well known coincidence results for scalar-valued homogeneous polynomials can not be generalized in some natural directions.
متن کامل